Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Abstract The Oligocene Latir magmatic center in northern New Mexico is an exceptionally well-exposed volcanoplutonic complex that hosts a variety of magmatic-hydrothermal deposits, ranging from relatively deep, F-rich porphyry Mo mineralization to shallower epithermal deposits. We present new whole-rock chemical and isotopic data for plutonic rocks from the Latir magmatic center, including extensive sampling of drill core samples of intrusive rocks from the Questa porphyry Mo deposit. These data document temporal chemical trends of porphyry-related mineralization that occurred after caldera-forming magmatism and during postcaldera batholith assembly. Silicic magmas were generated multiple times throughout the history of the Latir magmatic center, but few are associated with the formation of a mineral deposit. Whole-rock trace element ratios and Sr, Nd, and Pb isotope compositions vary throughout the protracted history of silicic magmatism. The caldera-forming ignimbrite and early phase of postcaldera intrusions are unmineralized, more enriched in high field strength elements, and generally contain less radiogenic Sr and Pb and more radiogenic Nd than later intrusions. The Questa porphyry Mo deposit formed immediately after the most isotopically primitive phase of the batholith was assembled, ruling out simple reworking of juvenile mantle-derived crust as the source for mineralizing magmas. Rhyolite dikes associated with polymetallic sulfide deposits intruded ~800 k.y. after Mo mineralization, and Nd isotope data indicate that these dikes are associated with different batches of magma and are unrelated to the Mo-mineralizing intrusions at the Questa mine. Together, these data indicate that the source of magmas changed significantly throughout the 10-m.y. history of the magmatic center. We assess multiple genetic models for porphyry-related magmatism against this data set, favoring models with discrete periods of magma genesis from a deep hybridized zone in the lower crust giving rise to the punctuated periods of mineralization. These observations suggest that the formation of mineral deposits within a central magmatic locus is likely the result of the piecemeal assembly of individual hydrothermal-magmatic systems, and that distal and younger polymetallic mineralization commonly observed near known porphyry deposits represents decoupled processes.more » « less
-
Abstract U-Pb geochronology by isotope dilution–thermal ionization mass spectrometry (ID-TIMS) has the potential to be the most precise and accurate of the deep time chronometers, especially when applied to high-U minerals such as zircon. Continued analytical improvements have made this technique capable of regularly achieving better than 0.1% precision and accuracy of dates from commonly occurring high-U minerals across a wide range of geological ages and settings. To help maximize the long-term utility of published results, we present and discuss some recommendations for reporting ID-TIMS U-Pb geochronological data and associated metadata in accordance with accepted principles of data management. Further, given that the accuracy of reported ages typically depends on the interpretation applied to a set of individual dates, we discuss strategies for data interpretation. We anticipate that this paper will serve as an instructive guide for geologists who are publishing ID-TIMS U-Pb data, for laboratories generating the data, the wider geoscience community who use such data, and also editors of journals who wish to be informed about community standards. Combined, our recommendations should increase the utility, veracity, versatility, and “half-life” of ID-TIMS U-Pb geochronological data.more » « less
-
null (Ed.)Age determination of minerals using the U–Pb technique is widely used to quantify time in Earth's history. A number of geochronology laboratories produce the highest precision U–Pb dates employing the EARTHTIME 202 Pb– 205 Pb– 233 U– 235 U tracer solution for isotope dilution, and the EARTHTIME ET100 and ET2000 solutions for system calibration and laboratory intercalibration. Here, we report ET100 and ET2000 solution data from the geochronology laboratory of University of Geneva obtained between 2008 and 2021 and compare the most recent data with results from the geochronology laboratories of Princeton University and ETH Zürich. This compilation demonstrates that (i) the choice of the thermal ionization mass spectrometer model has no influence on precision and accuracy of the data; (ii) the often observed excess scatter of apparent ET100 solution 206 Pb/ 238 U dates can be mitigated by more careful tracer-sample equilibration; and (iii) natural zircon reference materials are not suitable for evaluating intra-laboratory repeatability and inter-laboratory reproducibility, since they combine several phenomena of natural system complexities (especially domains of different age within the same zircon grain, and residual loss of radiogenic lead in domains of high decay damage after chemical abrasion pre-treatment). We provide our best estimates of apparent dates for the ET100 solution ( 206 Pb/ 238 U date, 100.173 ± 0.003 Ma), for ET2000 solution ( 207 Pb/ 206 Pb date, 1999.935 ± 0.063 Ma), as well as for natural reference zircon Temora-2 ( 206 Pb/ 238 U date, 417.353 ± 0.052 Ma). These data will allow U–Pb laboratories to evaluate their analytical performance and to independently calibrate non-EARTHTIME tracer solutions in use.more » « less
An official website of the United States government
